Science

Search by keywords:
Total Articles 73 - 81 of 6039 | |

Diesel Exhaust After-Treatment by Silicon Carbide Fiber Filter

Author(s):Kazuhiro Yamamoto -- Kenta Matsui
Journal: Fibers
Publisher:
Abstract
| Pages: 128-141
To reduce particulate matter (PM) in diesel exhaust gas, a diesel particulate filter (DPF) has been developed. The thermal durability of existing platinum catalyst-supported DPFs is inadequate. We are focusing on a non-catalytic after-treatment of silicon carbide (SiC) fibers with highly thermal durability. In this study, we simulated the processes of soot deposition and oxidation. Results show that even in exhaust gas without soot, a complex flow pattern is observed. The porosity of the filter is not constant along the flow direction, and the pressure gradient varies. The friction factor is slightly larger than the predicted value by the empirical equation in uniform porous media flow. Since the soot deposition occurs inside the filter, the depth filtration by SiC fibers was confirmed. In addition, the effects of filter temperature and oxygen concentration are clearly revealed. That is, comparing the oxidation at 700 °C, the deposited soot amount at 1200 and 1400 °C is decreased by 60% and 92%, respectively. Raising the oxygen concentration from 10% to 20% increases the oxidation efficiency from 42% to 64%. Although more work is needed over a wide range of operating conditions, a combination of these two parameters is important to achieve the non-catalytic exhaust after-treatment.

Ultra-High Sensitive Strain Sensor Based on Post-Processed Optical Fiber Bragg Grating

Author(s):Marta S. Ferreira -- Jörg Bierlich -- Martin Becker -- Kay Schuster -- José L. Santos -- Orlando Frazão
Journal: Fibers
Publisher:
Abstract
| Pages: 142-149
An ultra-high sensitive strain sensor is proposed. The sensing head, based on the post-processing of a fiber Bragg grating, is used to perform passive and active strain measurements. Both wavelength and full width half maximum dependences with the applied strain are studied for the passive sensor, where maximum sensitivities of 104.1 pm/µε and 61.6 pm/µε are respectively obtained. When combining the high performance of this sensor with a ring laser cavity configuration, the Bragg grating will act as a filter and high resolution measurements can be performed. With the proposed sensor, a resolution of 700 nε is achieved.

Side-Detecting Optical Fiber Doped with Tb3+ for Ultraviolet Sensor Application

Author(s):Jacek Zmojda -- Marcin Kochanowicz -- Piotr Miluski -- Dominik Dorosz
Journal: Fibers
Publisher:
Abstract
| Pages: 150-157
 In the article a novel construction of a side-detecting luminescent optical fiber for an UV sensor application has been presented. In the fiber, structure phosphate glass doped with 0.5 mol% Tb3+ ions was used as a UV sensitive core/ribbon. The luminescence spectrum of glass and the optical fiber was measured under UV excitation using a deuterium lamp. It was found that  large energy gap between upper (metastable) and lower (ground) levels of terbium ions incorporated in phosphate matrix leads to the effective emission at wavelengths of 489, 543, 586 and 621 nm, which correspond to 5D4 → 7FJ, (J = 3, 4, 5, 6) transitions respectively. Phosphate glass doped with optimal (the strongest VIS emission) concentration of Tb3+ (0.5 mol%) was used as the active core/ribbon in the construction of UV side-detecting optical fiber.

High Strength and High Modulus Electrospun Nanofibers

Author(s):Jian Yao -- Cees W. M. Bastiaansen -- Ton Peijs
Journal: Fibers
Publisher:
Abstract
| Pages: 158-186
Electrospinning is a rapidly growing polymer processing technology as it provides a viable and simple method to create ultra-fine continuous fibers. This paper presents an in-depth review of the mechanical properties of electrospun fibers and particularly focuses on methodologies to generate high strength and high modulus nanofibers. As such, it aims to provide some guidance to future research activities in the area of high performance electrospun fibers.

Galaxy Rotation Curves in Covariant Hořava-Lifshitz Gravity

Author(s):Jean Alexandre -- Martyna Kostacinska
Journal: Galaxies
Publisher:
Abstract
| Pages: 1-12
Using the multiplicity of solutions for the projectable case of the covariant extension of Hořava-Lifshitz gravity, we show that an appropriate choice for the auxiliary field allows for an effective description of galaxy rotation curves. This description is based on static and spherically symmetric solutions of covariant Hořava-Lifshitz gravity and does not require Dark Matter.

Two-Body Orbit Expansion Due to Time-Dependent Relative Acceleration Rate of the Cosmological Scale Factor

Author(s):Lorenzo Iorio
Journal: Galaxies
Publisher:
Abstract
| Pages: 13-21
By phenomenologically assuming a slow temporal variation of the percent acceleration rate S̈S -1 of the cosmic scale factor S(t), it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of S̈S -1 around the present epoch t0, a non-vanishing shift per orbit (Δr) of the two-body relative distance r occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter H0 at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period Pb ≈ 31 Myr, the general relativistic distance shift per orbit turns out to be of the order of (Δr) ≈ 70 km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of (Δr) ≈ 2–4 pc. Our result has a general validity since it holds in any cosmological model admitting the Hubble law and a slowly varying S̈S-1(t). More generally, it is valid for an arbitrary Hooke-like extra-acceleration whose “elastic” parameter κ is slowly time-dependent, irrespectively of the physical mechanism which may lead to it. The coefficient κ1 of the first-order term of the power expansion of κ(t) can be preliminarily constrained in a model-independent way down to a κ1 ≲ 2 x 10-13 year-3 level from latest Solar System’s planetary observations. The radial velocities of the double lined spectroscopic binary ALPHA Cen AB yield κ1 ≲ 10-8 year-3.

Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy

Author(s):Leandros Perivolaropoulos
Journal: Galaxies
Publisher:
Abstract
| Pages: 22-61
 A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”), the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole”) and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.

Revisiting Vaidya Horizons

Author(s):Alex B. Nielsen
Journal: Galaxies
Publisher:
Abstract
| Pages: 62-71
In this study, we located and compared different types of horizons in the spherically symmetric Vaidya solution. The horizons we found were trapping horizons, which can be null, timelike, or spacelike, null surfaces with constant area change and also conformal Killing horizons. The conformal Killing horizons only exist for certain choices of the mass function. Under a conformal transformation, the conformal Killing horizons can be mapped into true Killing horizons. This allows conclusions drawn in the dynamical Vaidya spacetime to be related to known properties of static spacetimes. We found the conformal factor that performs this transformation and wrote the new metric in explicitly static coordinates. Using this construction we found that the tunneling argument for Hawking radiation does not umabiguously support Hawking radiation being associated with the trapping horizon. We also used this transformation to derive the form of the surface gravity for a class of physical observers in Vaidya spacetimes.

Metamaterial Model of Tachyonic Dark Energy

Author(s):Igor I. Smolyaninov
Journal: Galaxies
Publisher:
Abstract
| Pages: 72-80
Dark energy with negative pressure and positive energy density is believed to be responsible for the accelerated expansion of the universe. Quite a few theoretical models of dark energy are based on tachyonic fields interacting with itself and normal (bradyonic) matter. Here, we propose an experimental model of tachyonic dark energy based on hyperbolic metamaterials. Wave equation describing propagation of extraordinary light inside hyperbolic metamaterials exhibits 2 + 1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational force between extraordinary photons. We demonstrate that this model has a self-interacting tachyonic sector having negative effective pressure and positive effective energy density. Moreover, a composite multilayer SiC-Si hyperbolic metamaterial exhibits closely separated tachyonic and bradyonic sectors in the long wavelength infrared range. This system may be used as a laboratory model of inflation and late time acceleration of the universe.
Page:12345678910Next