Online ISSN: 2218-2004


Search by keywords:
Article Download / Year
Article Published / Year

Evaluation and Comparison of the Configuration Interaction Calculations for Complex Atoms


Charlotte Froese Fischer

| Pages: 1-14
Configuration interaction (CI) methods are the method of choice for the determination of wave functions for complex atomic systems from which a variety of atomic properties may be computed. When applied to highly ionized atoms, where few, if any, energy levels from observed wavelengths are available, the question arises as to how a calculation may be evaluated. Many different codes are available for such calculations. Agreement between the results from different codes in itself is not a check on accuracy, but may be due to a similarity in the computational procedures. This paper reviews basic theory, which, when applied in a systematic manner, can be the basis for the evaluation of accuracy. Results will be illustrated in the study of 4s24p5 (odd) and 4s24p44d (even) levels in W39+ and the transitions between them.

Critical Assessment of Theoretical Calculations of Atomic Structure and Transition Probabilities: An Experimenterís View


Elmar Träbert

| Pages: 15-85
The interpretation of atomic observations by theory and the testing of computational predictions by experiment are interactive processes. It is necessary to gain experience with “the other side” before claims of achievement can be validated and judged. The discussion covers some general problems in the field as well as many specific examples, mostly organized by isoelectronic sequence, of what level of accuracy recently has been reached or which atomic structure or level lifetime problem needs more attention.