Online ISSN: 2226-4310

Print ISSN: abcd-efjh

Publisher: MDPI
Search by keywords:
Article Download / Year
Article Published / Year


Robust Flight Control Design to Minimize Aircraft Loss-of-Control Incidents


Ronald A. Hess

| Pages: 1-17
A pseudo-sliding mode control synthesis procedure discussed previously in the literature is applied to the design of a control system for a nonlinear model of the NASA Langley Generic Transport Model. The complete vehicle model is included as an appendix. The goal of the design effort is the synthesis of a robust control system to minimize aircraft loss-of-control by preserving fundamental pilot input—system response characteristics across the flight envelope, here including the possibility of actuator damage. The design is carried out completely in the frequency domain and is described by a ten-step synthesis procedure, also previously introduced it the literature. Five different flight tasks are considered in computer simulations of the completed design demonstrating the stability and performance robustness of the control system.

Student Expectations from Participating in a Small Spacecraft Development Program


Jeremy Straub -- David Whalen

| Pages: 18-30
The number of small spacecraft development programs in the United States and worldwide have increased significantly over the course of the last 10 years. This paper analyzes reasons for the growth in these programs by assessing what student participants hope to gain from their participation. Participants in the OpenOrbiter Small Spacecraft Development Initiative at the University of North Dakota were surveyed at the beginning of an academic year to determine why they were planning to participate in the program again or join and participate for the first time. This paper presents the results of this survey.

The Space Mission Design Example Using LEO Bolos


Oleg Nizhnik

| Pages: 31-51
Four sample space launch missions were designed using rotating momentum transfer tethers (bolos) within low Earth orbit and a previously unknown phenomenon of “aerospinning” was identified and simulated. The momentum transfer tethers were found to be only marginally more efficient than the use of chemical rocket boosters. Insufficient power density of modern spacecrafts was identified as the principal inhibitory factor for tether usage as a means of launch-assistance, with power densities at least 10 W/kg required for effective bolos operation.